Prevention of overt hypoglycemia during exercise: stimulation of endogenous glucose production independent of hepatic catecholamine action and changes in pancreatic hormone concentration.

نویسندگان

  • Robert H Coker
  • Yoshiharu Koyama
  • Joshua C Denny
  • Raul C Camacho
  • D Brooks Lacy
  • David H Wasserman
چکیده

These studies were conducted to determine the magnitude and mechanism of compensation for impaired glucagon and insulin responses to exercise. For this purpose, dogs underwent surgery >16 days before experiments, at which time flow probes were implanted and silastic catheters were inserted. During experiments, glucagon and insulin were fixed at basal levels during rest and exercise using a pancreatic clamp with glucose clamped (PC/GC; n = 5), a pancreatic clamp with glucose unclamped (PC; n = 7), or a pancreatic clamp with glucose unclamped + intraportal propranolol and phentolamine hepatic alpha- and beta-adrenergic receptor blockade (PC/HAB; n = 6). Glucose production (R(a)) was measured isotopically. Plasma glucose was constant in PC/GC, but fell from basal to exercise in PC and PC/HAB. R(a) was unchanged with exercise in PC/GC, but was slightly increased during exercise in PC and PC/HAB. Despite minimal increases in epinephrine in PC/GC, epinephrine increased approximately sixfold in PC and PC/HAB during exercise. In summary, during moderate exercise, 1) the increase in R(a) is absent in PC/GC; 2) only a moderate fall in arterial glucose occurs in PC, due to a compensatory increase in R(a); and 3) the increase in R(a) is preserved in PC/HAB. In conclusion, stimulation of R(a) by a mechanism independent of pancreatic hormones and hepatic adrenergic stimulation is a primary defense against overt hypoglycemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucoregulation during exercise: hypoglycemia is prevented by redundant glucoregulatory systems, sympathochromaffin activation, and changes in islet hormone secretion.

During mild or moderate nonexhausting exercise, glucose utilization increases sharply but is normally matched by increased glucose production such that hypoglycemia does not occur. To test the hypothesis that redundant glucoregulatory systems including sympathochromaffin activation and changes in pancreatic islet hormone secretion underlie this precise matching, eight young adults exercised at ...

متن کامل

Pancreatic innervation is not essential for exercise-induced changes in glucagon and insulin or glucose kinetics.

The purpose of this study was to determine the role of pancreatic innervation in mediating exercise-induced changes in pancreatic hormone secretion and glucose kinetics. Dogs underwent surgery >16 days before an experiment, at which time flow probes were implanted on the portal vein and the hepatic artery, and Silastic catheters were inserted in the carotid artery, portal vein, and hepatic vein...

متن کامل

Glucagon sensitivity and clearance in type 1 diabetes: insights from in vivo and in silico experiments.

Glucagon use in artificial pancreas for type 1 diabetes (T1D) is being explored for prevention and rescue from hypoglycemia. However, the relationship between glucagon stimulation of endogenous glucose production (EGP) viz., hepatic glucagon sensitivity, and prevailing glucose concentrations has not been examined. To test the hypothesis that glucagon sensitivity is increased at hypoglycemia vs....

متن کامل

Opioid Receptor Blockade Prevents Exercise-Associated Autonomic Failure in Humans

Hypoglycemia and exercise both induce the release of β-endorphin, which plays an important role in the modulation of the autonomic response during subsequent events. Because opioid receptor (OR) blockade during antecedent hypoglycemia has been shown to prevent hypoglycemia-associated autonomic failure, we hypothesized that OR blockade during exercise would prevent exercise-associated autonomic ...

متن کامل

The effect of eight weeks of high intensity interval training and n-chromosomal royal jelly on G6Pase gene expression in hepatocytes, glucose levels and insulin resistance in type 2 diabetic rats

Background: The aim of this study was the interactive effect of High Intensity Exercise Training(HIIT)and n-chromosomal royal jelly on G6Pase gene expression in liver hepatocytes and glucose levels and insulin resistance in type 2 diabetic rats. Intense interval training is usually performed with intensities above 90% of the maximum heart rate and short rest periods and a training duration of l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 2002